

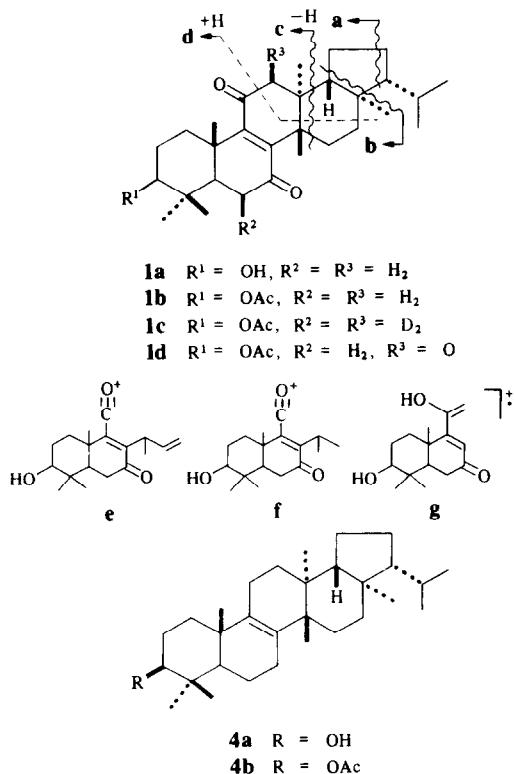
SUPINENOLONES A, B AND C, FERNANE TYPE TRITERPENOIDS FROM EUPHORBIA SUPINA

REIKO TANAKA and SHUNYO MATSUNAGA*

Osaka University of Pharmaceutical Sciences, 2-10-65 Kawai, Matsubara, Osaka 580, Japan

(Received 24 January 1989)

Key Word Index—*Euphorbia supina*; Euphorbiaceae; whole herb; triterpenoids; 3 β ,7 α -dihydroxyfern-8-en-11-one; 3 β ,11 β -dihydroxyfern-8-en-7-one; 3 β -hydroxyfern-8-en-7,11-dione; ^{13}C NMR; HRMS.


Abstract—Three new triterpenoids, named supinenolones A, B and C, have been isolated from *Euphorbia supina*. Their structures were established as 3 β ,7 α -dihydroxyfern-8-en-11-one, 3 β ,11 β -dihydroxyfern-8-en-7-one and 3 β -hydroxyfern-8-en-7,11-dione, respectively, on the basis of chemical and spectral evidence.

INTRODUCTION

In the course of a search for the biologically active constituents of *Euphorbia supina* Rafin., a toxic annual weed which is used as a folk medicine [1, 2], we have isolated and characterized 21 biogenetically interesting triterpenoids [3-8] including spirosupinanonediol [4] and the known compound, loliolide [8]. Spirosupinanonediol has the novel skeletal system of 7(8 \rightarrow 9) *abeo*-9S-D:C-friedo-B':A'-neogammacerane, a migrated farnane, for which we gave the name of 'spirosupinane'. Further examination of the neutral benzene extract of the whole herb of this plant by silica gel column chromatography furnished three new triterpenoids, which we have named supinenolones A, B and C. The present paper deals with the structure elucidation of the above compounds, starting with supinenolone C because of explanatory convenience.

RESULTS AND DISCUSSION

Supinenolone C (**1a**), $\text{C}_{30}\text{H}_{46}\text{O}_3$ $[\text{M}]^+$ at m/z 454.3445, showed an UV absorption band characteristic for a transoid-ene-dione chromophore [λ_{max} 272 nm (ϵ 8500)]. Its ^1H and ^{13}C NMR spectra established the presence of six tertiary methyl groups, one isopropyl group, a C-3 α carbinolic methine group, a tetrasubstituted double bond and two keto-groups (see Tables 1 and 2). On acetylation, it gave an acetate (**1b**). Deuteration of **1b** afforded a tetradeutero-acetate (**1c**), indicative of the presence of a $-\text{CH}_2-\text{CO}-\text{C}=\text{C}-\text{CO}-\text{CH}_2-$ grouping in the molecule of **1a**. The physical and IR spectral data of **1b** were closely similar to those of 3 β -acetoxyfern-8-en-7,11-dione [9] which has previously been synthesized from motiol (fern-7-en-3 β -ol), a triterpene component of *Rhododendron linearifolium*. Furthermore, in the high resolution mass spectrum (HRMS) of **1a**, the presence of seven characteristic fragment peaks at m/z 384.2669 $[\text{C}_{25}\text{H}_{36}\text{O}_3]^+$ (ion **a**), 369.2430 $[\text{C}_{24}\text{H}_{33}\text{O}_3]^+$ (ion **b**), 301.1806 $[\text{C}_{19}\text{H}_{25}\text{O}_3]^+$ (ion **c**), 290.1867 $[\text{C}_{18}\text{H}_{26}\text{O}_3]^+$ (ion **d**), 289.1803 $[\text{C}_{18}\text{H}_{25}\text{O}_3]^+$ (ion **e**), 277.1829 $[\text{C}_{17}\text{H}_{25}\text{O}_3]^+$ (ion **f**), and 250.1575 $[\text{C}_{15}\text{H}_{22}\text{O}_3]^+$ (ion **g**) [10], besides peaks at m/z 411 $[\text{M}-\text{C}_3\text{H}_7]^+$ and 396 $[\text{M}-\text{Me}-\text{C}_3\text{H}_7]^+$ supported the above deduction.

The synthesis of **1b** was carried out using fern-8-en-3 β -ol (**4a**), which is the most abundant triterpene constituent in this plant [6]. Acetylation of **4a** followed by chromium trioxide oxidation of the resulting acetate (**4b**) in acetic acid afforded, together with a small amount of 3 β -acetoxy-fern-8-en-7,11,12-trione (**1d**), the acetoxy-dione identical in all respects with **1b**. Thus, the structure of supinenolone C was shown to be 3 β -hydroxyfern-8-en-7,11-dione (**1a**).

Supinenolones A (**2a**) and B (**3a**) had the same molecular formulae, $\text{C}_{30}\text{H}_{48}\text{O}_3$, in the high resolution mass spectra (HRMS), and also showed similar UV absorption

Table 1. 300 MHz ^1H NMR chemical shifts of compounds **1a**, **1b**, **2a**, **2b**, **3a**, **3b**, **4a** and **4b** in CDCl_3

	1a	1b	2a	2b	3a	3b	4a	4b
23-Me	1.02	0.90	1.05	0.83	0.99	0.87	1.00	0.87
24-Me	0.90	0.98	0.85	0.88	0.92	0.98	0.78	0.88
25-Me	1.25	1.27	1.18	1.22	1.19	1.11	0.953	0.97
26-Me	1.27	1.28	1.11	1.11	1.36	1.35	0.949	0.76
27-Me	1.04	1.03	0.99	0.97	0.81	0.81	0.77	0.76
28-Me	0.76	0.77	0.79	0.77	0.74	0.73	0.76	0.75
29-Me	0.84 <i>d</i> <i>J</i> 6.5	0.84 <i>d</i> <i>J</i> 6.5	0.84 <i>d</i> <i>J</i> 6.5	0.84 <i>d</i> <i>J</i> 6.5	0.83 <i>d</i> <i>J</i> 6.5	0.82 <i>d</i> <i>J</i> 6.5	0.83 <i>d</i> <i>J</i> 6.5	0.83 <i>d</i> <i>J</i> 6.5
30-Me	0.90 <i>d</i> <i>J</i> 6.5	0.90 <i>d</i> <i>J</i> 6.5	0.90 <i>d</i> <i>J</i> 6.5	0.89 <i>d</i> <i>J</i> 6.5	0.89 <i>d</i> <i>J</i> 6.5	0.88 <i>d</i> <i>J</i> 6.5	0.89 <i>d</i> <i>J</i> 6.5	0.89 <i>d</i> <i>J</i> 6.5
H-1	1.15 <i>m</i> 2.50 <i>dt</i> <i>J</i> 12.3	1.17 <i>m</i> 2.51 <i>dt</i> <i>J</i> 12.3	1.03 <i>m</i> 2.53 <i>dt</i> <i>J</i> 12.3	1.21 <i>m</i> 2.50 <i>dt</i> <i>J</i> 12.3	1.61 <i>m</i> 2.32 <i>dt</i> <i>J</i> 12.3	1.66 2H, <i>m</i>		
H-3 α	3.29 <i>dd</i> <i>J</i> 10.3	4.58 <i>dd</i> <i>J</i> 10.8	3.33 <i>dd</i> <i>J</i> 10.0	4.58 <i>dd</i> <i>J</i> 10.0	3.32 <i>dd</i> <i>J</i> 10.2	4.56 <i>dd</i> <i>J</i> 10.2	3.25 <i>dd</i> <i>J</i> 11.5	4.50 <i>dd</i> <i>J</i> 11.5
	6.2	6.2	6.7	6.7	6.7	6.7	5.3	5.3
H-6 α	2.47 <i>dd</i> <i>J</i> 18.5	2.48 <i>dd</i> <i>J</i> 18.5	1.71 <i>m</i> 8.0	1.66 <i>m</i> 8.0	2.44 <i>dd</i> 8.0	2.45 <i>dd</i> 8.0		
H-6 β	2.54 <i>dd</i> <i>J</i> 18.5	2.54 <i>dd</i> <i>J</i> 18.5	1.82 <i>m</i> 11.7	1.82 <i>m</i> 11.7	2.50 <i>dd</i> <i>J</i> 18.5	2.50 <i>dd</i> 11.7		
H-7 β			4.41 <i>br s</i> <i>W/2</i> 8.0	5.46 <i>dd</i> <i>J</i> 3.1				
				1.9				
H-11 α					4.72 <i>dd</i> <i>J</i> 15.2	5.73 <i>dd</i> <i>J</i> 15.2		
					7.2	7.2		
H-12 α	2.30 <i>d</i> <i>J</i> 18.7	2.36 <i>d</i> <i>J</i> 18.7	2.20 <i>d</i> <i>J</i> 18.7	2.21 <i>d</i> <i>J</i> 18.7	2.02 <i>dd</i> <i>J</i> 18.7	2.23 <i>dd</i> <i>J</i> 18.7		
					9.8	9.8		
H-12 β	2.19 <i>d</i> <i>J</i> 18.7	2.16 <i>d</i> <i>J</i> 18.7	2.10 <i>d</i> <i>J</i> 18.7	2.12 <i>d</i> <i>J</i> 18.7	1.48 <i>m</i>	1.42 <i>m</i>		
H-15	1.63 <i>m</i> 2.48 <i>dt</i> <i>J</i> 12.1	1.65 <i>m</i> 2.47 <i>dt</i> <i>J</i> 12.1	1.49 <i>m</i> 2.21 <i>dt</i> <i>J</i> 12.1	1.25 <i>m</i> 1.96 <i>dt</i> <i>J</i> 12.1	1.43 <i>m</i> 2.41 <i>dt</i> <i>J</i> 12.1	1.39 <i>m</i> 2.39 <i>dt</i> <i>J</i> 12.1		
	4.4	4.4	4.4	4.4	4.4	4.4		
OCOMe		2.07		2.06		2.05		2.05
OCOMe				2.07		2.07		

bands for an α,β -conjugated enone system (see Experimental). The ^1H and ^{13}C NMR spectra established the presence in both compounds of six tertiary and two secondary methyl groups, two hydroxymethylene groups, a tetrasubstituted double bond and a keto-group (Tables 1 and 2). On acetylation, compounds **2a** and **3a** gave different diacetates, **2b** and **3b** respectively, whereas on chromium trioxide oxidation in pyridine both compounds gave the same trione (**2c**) with a transoid enedione chromophore [λ_{max} 272 nm (ϵ 8 500)]. These results, to-

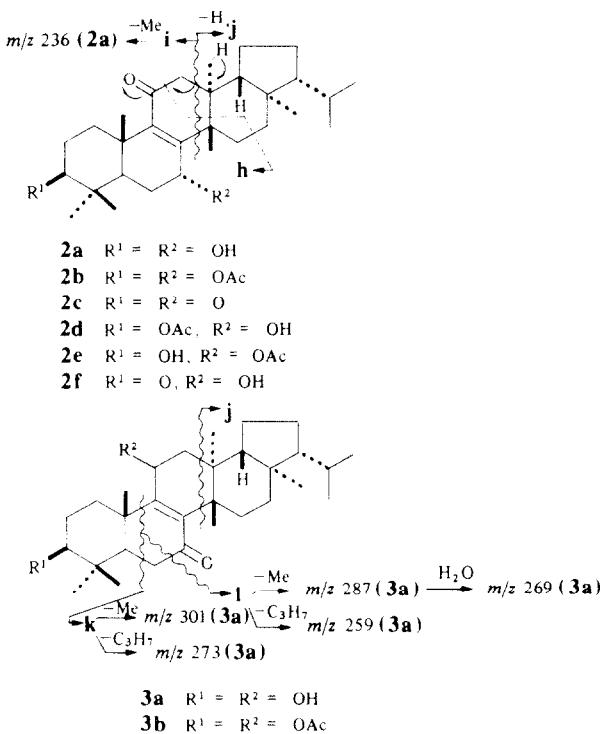

gether with the absence of any ethylenic proton signals in the IR and ^1H NMR spectra, indicated that **2a** and **3a** must have the same carbon skeleton involving a γ -hydroxy- α,β -conjugated enone system with a tetrasubstituted double bond. The CD spectra of both compounds showed similar multiple cotton effect curves (see Experimental). Partial acetylation of **2a** gave two different monoacetates, **2d** and **2e**, together with both **1b** and **2b**, while mild oxidation with chromium trioxide in pyridine afforded the hydroxy-dione identical in all respects with

Table 2. 74.5 MHz ^{13}C NMR chemical shifts of compounds **1a**, **1b**, **2a**, **2b**, **3a**, **3b** and **4a** in CDCl_3

C	1a	1b	2a	2b	3a	3b	4a
1	34.42	34.06	34.14	33.92	33.67	33.58	35.46
2	27.43	23.80	27.93	24.19	27.18	23.66	27.96
3	78.06	79.56	78.62	80.11	78.25	79.49	79.02
4	38.64	37.51	38.38	37.29	38.99	37.96	38.92
5	47.97	48.02	45.18	45.63	48.00	48.30	50.47
6	36.70	36.51	28.63	25.54	36.85	36.70	20.36
7	199.99	199.51	64.24	67.19	200.68	199.76	27.23
8	151.92	150.93	157.95	154.63	142.20	145.30	134.28
9	156.01	155.76	142.58	144.88	160.19	156.01	134.28
10	38.16	37.97	38.59	38.16	39.47	39.03	37.60
11	201.14	201.06	199.93	199.59	65.88	68.37	19.14
12	51.14	51.10	50.80	50.83	42.05	38.67	30.26
13	38.47	38.44	43.33	43.41	39.38	39.03	41.08
14	41.59	41.56	37.54	37.68	40.51	40.63	36.73
15	26.41	26.36	27.23	25.99	25.63	25.85	26.98
16	35.80	35.76	35.83	35.66	35.71	35.80	35.94
17	42.57	42.55	42.71	42.66	42.27	42.46	42.92
18	50.80	50.77	51.90	51.84	51.13	51.31	52.75
19	20.40	20.38	20.29	20.32	20.21	20.34	18.90
20	28.93	27.90	28.02	28.04	27.96	28.07	28.38
21	59.54	59.50	59.52	59.46	59.58	59.66	59.77
22	30.66	30.62	30.66	30.66	30.56	30.66	30.77
23	27.51	27.39	28.18	27.79	27.36	27.29	28.07
24	14.87	15.92	16.07	16.86	14.96	16.07	15.54
25	17.93	17.96	17.96	18.07	20.01	22.90	22.08
26	21.78	20.72	23.94	23.86	23.73	22.90	22.08
27	20.79	21.75	19.73	19.61	16.94	17.68	15.83
28	14.02	14.02	13.85	13.91	14.55	14.47	14.64
29	22.90	22.87	22.90	22.90	22.78	22.82	22.99
30	22.03	22.01	22.06	22.00	21.85	21.97	22.08
<u>OCOMe</u>	—	21.22	—	21.27	—	21.22	—
<u>OCOMe</u>	—	—	—	21.38	—	21.44	—
<u>OC OMe</u>	—	—	—	169.98	—	170.06	—
<u>OC OMe</u>	—	170.88	—	171.02	—	170.82	—

supinenolone C (**1a**), along with **2f**. These facts indicated that compounds **2a** and **3a** must be either the 7-hydroxy or the 11-hydroxy derivatives of **1a**. The HRMS data allowed us to discriminate the structural difference between **2a** and **3a**. Compound **2a** showed four predominant peaks due to the cleavage of the rings C and D at m/z 277.1804 [$\text{C}_{17}\text{H}_{25}\text{O}_3$]⁺ (ion **h**) 251.1645 [$\text{C}_{15}\text{H}_{23}\text{O}_3$]⁺ (ion **i**), 236.1805 [$\text{i}-\text{Me}$]⁺ and 205.1958 [$\text{C}_{15}\text{H}_{25}$]⁺ (ion **j**), besides peaks at m/z 413.3015 [$\text{M}-\text{C}_3\text{H}_7$]⁺ and 395 [$\text{M}-\text{H}_2\text{O}-\text{C}_3\text{H}_7$]⁺. In contrast, compound **3a** showed eight characteristic fragment peaks due to α - and β -cleavage of the C-7 keto-group in the B ring involving rupture of the C(9)-C(10) bond at m/z 316.2385 [$\text{C}_{21}\text{H}_{32}\text{O}_2$]⁺ (ion **k**), 302.2239 [$\text{C}_{20}\text{H}_{30}\text{O}_2$]⁺ (ion **l**), 301.2157 [$\text{k}-\text{Me}$]⁺, 287.2020 [$\text{i}-\text{Me}$]⁺, 273.1908 [$\text{k}-\text{C}_3\text{H}_7$]⁺, 269.1862 [$\text{i}-\text{Me}-\text{H}_2\text{O}$]⁺, 259.1745 [$\text{i}-\text{C}_3\text{H}_7$]⁺, and 205.1943 [$\text{C}_{15}\text{H}_{25}$]⁺ (ion **j**), together with peaks at m/z 413.3063 [$\text{M}-\text{C}_3\text{H}_7$]⁺ and 395 [$\text{M}-\text{H}_2\text{O}-\text{C}_3\text{H}_7$]⁺. The above results clearly indicated that **2a** and **3a** had the 7-hydroxy- Δ^8 -en-11-one and the 11-hydroxy- Δ^8 -en-7-one grouping, respectively, in the fernane skeleton. In the 90 MHz ^1H NMR spectra of **2a** and **3a**, the signals for one of the two hydroxymethylene groups appeared at δ 3.33 ($dd, J=11$ and 7 Hz) and were attributed to the C-3 α axial proton, which exhibited

acetylation shift at δ 4.63 ($dd, J=11$ and 7 Hz), 4.58 ($dd, J=11$ and 7 Hz) and 4.56 ($dd, J=11$ and 7 Hz) in **2b**, **3b** and **2d**, respectively. The signal for the second group appeared at δ 4.43 ($m, W/2=8$ Hz) in **2a** and 4.75 ($dd, J=15$ and 7 Hz) in **3a** and were due to the allylic hydroxymethylene protons of C-7 β (eq) and C-11 α (ax), respectively, on the half-chair environments of the B/C rings. These signals were shifted to δ 5.53 ($m, W/2=8$ Hz, H-7 β) and 5.75 ($dd, J=15$ and 7 Hz, H-11 α) in **2b** and **3b**, respectively. Therefore, supinenolones A and B must have the structures of $3\beta,7\alpha$ -dihydroxyfern-8-en-11-one (**2a**) and $3\beta,11\beta$ -dihydroxyfern-8-en-7-one (**3a**), respectively. Conclusive evidence for the structures was obtained by the synthesis of compound **2a** from fern-8-en-3 β -ol (**4a**) [7]. Chromium trioxide oxidation of **4a** in acetic acid afforded the trione identical with **2c**. Lithium aluminium hydride reduction of **2c**, followed by partial acetylation provided two monoacetates, **2d** and **2e**, together with **1b** and **2b**. Alkaline hydrolysis of the synthetic **2b**, **2d** and **2e** gave the keto-diol identical in all respects with supinenolone A (**2a**). Consequently, the structures of supinenolones A and B were established to be **2a** and **3a**. Detailed analyses of the ^1H and ^{13}C NMR signals for compounds **1a**, **1b**, **2a**, **2b**, **3a**, **3b** and **4a** have also been carried out employing proton decoupling, DEPT, 2D ^1H - ^1H COSY, NOESY,

2D 1H - ^{13}C COSY, and 2D long range 1H - ^{13}C COSY techniques. In the 1H - 1H COSY experiment, the C-7 β proton signal in the **2a** correlated with the methylene proton signals at C-6, and the C-11 α proton signal in **3a** correlated with the methylene proton signals at C-12. Moreover, in the 2D long range 1H - ^{13}C COSY spectrum, the signal of the C-11 carbonyl carbon in **2a** clearly exhibited coupling to the methylene proton signals at C-12, whereas the C-7 carbonyl signal in **3a** was coupled to the methylene proton signals at C-6. All the above data supported well the structures of **2a** and **3a**. Assignments are listed in Tables 1 and 2.

To the best of our knowledge, compounds **1a**, **2a** and **3a** have not yet been described in the literature, although **1b** has been synthesized once [9]. So far 3β -hydroxylanost-8-en-7,11-dione [11] was the only naturally occurring triterpenoid having the Δ^8 -en-7,11-dione chromophore in the molecule. This compound was isolated from wool wax along with 3β -hydroxylanost-8-en-7-one, 3β -hydroxylanostan-7-one and 3β -hydroxylanostan-7,11-dione [12]. Investigation of the physiological activities of compounds **1a**, **2a** and **3a** are now in progress.

EXPERIMENTAL

General. Mps: uncorr. Optical rotations: $CHCl_3$; CD: $MeOH$; UV: aldehyde-free $EtOH$; IR: KBr discs, unless otherwise noted; 1H NMR (90 or 300 MHz) and ^{13}C NMR (74.5 MHz): $CDCl_3$ with TMS as int. standard; EIMS: double focussing mass spectrometer (accelerating voltage of 3–6.5 kV; ionizing potential 70 eV). CC: Kieselgel 60 and alumina 90 (Merck, 70–230 mesh); TLC: silica gel HF_{254} and PF_{254} (Merck).

Extraction and isolation of compounds: The extraction of the whole herb (10 kg) and the preliminary CC of the resulting neutral C_6H_6 extract (1.15 kg) has already been reported [5].

After germanicol and sitosterol had been eluted, fractionation of the column was continued with C_6H_6 - $CHCl_3$ (1:1), $CHCl_3$ and $CHCl_3$ - $EtOAc$ (10:1). All the above fractions were combined (86.0 g) on the basis of the TLC analytical results and twice rechromatographed over silica gel and alumina. Elution with C_6H_6 and C_6H_6 - $CHCl_3$ (10:1) yielded an yellowish brown gum (1.491 g) from the latter eluant. Successive elution of the column with C_6H_6 - $CHCl_3$ (3:1–1:1) afforded two colourless crystals, **2a** (885 mg) and **3a** (521 mg), respectively. Further elution with C_6H_6 - $CHCl_3$ (1:1) and $CHCl_3$ afforded fractions containing spirosupinanonediol [4], 3β -hydroxyhexanordammaran-20-one [5], 3,4-seco-adianane derivatives [7] and olean-12-en-3 β ,9 α ,11 α -triol [8], respectively, which have already been reported. Repeated CC of the gummy material on alumina furnished **1a** (1.282 g) as a pale yellow solid from the fractions eluted with C_6H_6 - $CHCl_3$ (1:1).

Supinenolone C (1a). Mp 209–210 $^\circ$, $[\alpha]_D^{23} -3.0^\circ$ (c 0.63), HRMS: m/z 454.3446 (M^+ , $C_{30}H_{46}O_3$ requires 454.3444); R_f 0.69 (C_6H_6 - $CHCl_3$ - $EtOAc$, 2:2:1); λ_{max} 272 nm (ϵ 8500) ($-OC-C=C-CO-$); ν_{max} cm^{-1} 3450 (OH), 1670 ($>C=C-C=O$), 1390, 1370, 1108, 1065, 1043; 1H and ^{13}C NMR: see Tables 1 and 2; EIMS m/z (rel. int.): 454 [M^+] (100), 439 [$M - Me$] $^+$ (55), 436 [$M - H_2O$] $^+$ (7), 426 [$M - CO$] $^+$ (6), 421 [$M - Me - H_2O$] $^+$ (6), 411 [$M - C_3H_7$] $^+$ (4), 396 [$M - Me - C_3H_7$] $^+$ (3), 393 [$M - H_2O - C_3H_7$] $^+$ (3), 384 [ion **a**] (13), 369 [ion **b**] (4), 301 [ion **c**] (4), 290 [ion **d**] (13), 289 [ion **e**] (11), 277 [ion **f**] (22), 250 [ion **g**] (6), 189 (4).

Supinenolone A (2a). Mp 309–310 $^\circ$, $[\alpha]_D^{23} -4.5^\circ$ (c 0.81), R_f 0.45 (C_6H_6 - $CHCl_3$ - $EtOAc$, 1:1:1); HRMS: m/z 456.3596 (M^+ , $C_{30}H_{48}O_3$ requires 456.3603); λ_{max} 255.5 nm (ϵ 7500) (γ -hydroxy- α,β -conjugated enone); ν_{max}^{KBr} cm^{-1} : 3450 (OH), 1660 (sh) and 1640 ($>C=C-C=O$), 1385, 1370, 1365, 1120, 1078, 1020; $\nu_{max}^{CHCl_3}$ ($CHCl_3$) cm^{-1} : 3440, 1720 (sh), 1658, 1375, 1357, 1340, 1015; CD: $[\theta]_{408} 0^\circ$, $[\theta]_{358} +1730^\circ$ (peak), $[\theta]_{323} 0^\circ$, $[\theta]_{307} -406^\circ$ (trough), $[\theta]_{295} -135^\circ$ (peak), $[\theta]_{264} -2164^\circ$ (trough), $[\theta]_{254} -1204^\circ$ (peak), $[\theta]_{220} -10280^\circ$; 1H and ^{13}C NMR: see Tables 1 and 2; EIMS m/z (rel. int.): 456 [M^+] (65), 438 [$M - H_2O$] $^+$ (100), 423 [$M - H_2O - Me$] $^+$ (23), 420 [$M - 2H_2O$] $^+$ (30), 413 [$M - Me - C_3H_7$] $^+$ (8), 405 [$M - Me - 2H_2O$] $^+$ (31), 395 [$M - H_2O - C_3H_7$] $^+$ (11), 317 (12), 277 [ion **h**] (39), 251 [ion **i**] (58), 236 [$I - Me$] $^+$ (22), 205 [ion **j**] (20).

Supinenolone B (3a). Mp 284–287 $^\circ$, $[\alpha]_D^{23} +4.6^\circ$ (c 0.69); R_f 0.27 (C_6H_6 - $CHCl_3$ - $EtOAc$, 1:1:1); HRMS: m/z 456.3614 (M^+ , $C_{30}H_{48}O_3$ requires 456.3603); λ_{max} 254.5 nm (ϵ 7900) (γ -hydroxy- α,β -conjugated enone); ν_{max}^{KBr} cm^{-1} : 3420 (OH), 1655 (sh) and 1642 ($>C=C-C=O$), 1380, 1375, 1360, 1060, 1038, 1010; $\nu_{max}^{CHCl_3}$ ($CHCl_3$) cm^{-1} : 3440, 1710 (sh), 1664, 1377, 1360, 1348, 1036, 1010; CD: $[\theta]_{390} 0^\circ$, $[\theta]_{345} +900^\circ$ (peak), $[\theta]_{310} 0^\circ$, $[\theta]_{300} -120^\circ$ (trough), $[\theta]_{283} -144^\circ$ (peak), $[\theta]_{261} -2316^\circ$ (trough), $[\theta]_{240} +1464^\circ$ (peak), $[\theta]_{210} -8340^\circ$; 1H and ^{13}C NMR: see Tables 1 and 2; EIMS m/z (rel. int.): 456 [M^+] (100), 441 [$M - Me$] $^+$ (52), 438 [$M - H_2O$] $^+$ (31), 423 [$M - Me - H_2O$] $^+$ (90), 413 [$M - C_3H_7$] $^+$ (15), 405 [$M - Me - 2H_2O$] $^+$ (21), 395 [$M - H_2O - C_3H_7$] $^+$ (30), 316 [ion **k**] (35), 302 [ion **l**] (47), 301 [$k - Me$] $^+$ (27), 287 [$I - Me$] $^+$ (37), 273 [$k - C_3H_7$] $^+$ (38), 269 [$I - Me - H_2O$] $^+$ (30), 259 [$I - C_3H_7$] $^+$, 205 [ion **j**] (41).

Acetylation of 1a. Compound **1a** (40 mg) was acetylated (Ac_2O -pyridine, 1:1, 2 ml) at room temp. overnight. Work-up as usual furnished the corresponding acetate (**1b**), mp 231–234 $^\circ$ ($MeOH$ - $CHCl_3$) (38 mg), $[\alpha]_D^{23} -18.6^\circ$ (c 0.42) (lit. [9] mp 227–228 $^\circ$); λ_{max} 275 nm (ϵ 7500); ν_{max} cm^{-1} : 1737 (OAc), 1668 ($>C=C-CO-$), 1383, 1375, 1364, 1248, 1190, 1160, 1028, 1010; 1H and ^{13}C NMR: see Tables 1 and 2; EIMS m/z (rel. int.): 496 [M^+] (100), 481 [$M - Me$] $^+$

(59), 468 [$M - CO$]⁺ (6), 453 [$M - C_3H_7$]⁺ (11), 436 [$M - HOAc$]⁺ (20), 426 [ion a] (23), 421 [$M - Me - HOAc$]⁺ (17), 411 [ion b] (11), 408 [$M - HOAc - CO$]⁺ (8), 369 [$b - CH_2CO$]⁺ (14), 343 [ion c] (6), 332 [ion d] (32), 331 [ion e] (21), 319 [ion f] (44), 301 [ion e - CH_2CO]⁺ (6), 292 [ion g] (18), 257 (14), 255 (11), 189 (14).

Tetra-deutero-supinenolone C (1c). A soln of Na (25 mg) in MeOD (1.5 ml) containing D₂O (0.5 ml) was added slowly to a boiling soln of compound 1b (4.7 mg) in MeOD (6.5 ml) under a stream of N₂ gas and the mixture was refluxed for 10 min. Evapn of the solvent *in vacuo* gave a residue, which was dissolved in dry Et₂O. Removal of the solvent afforded a solid. After twice repeating the above treatment on the residual solid, the final product was purified by prep. TLC (CHCl₃) to give 1c, (4 mg) as pale yellow needles, mp 211–213° (MeOD); ν_{max} cm⁻¹: 3550 (OH), 1670 (>C=C-CO-); ¹H NMR (300 MHz): δ 0.76 (3H, s, Me-28), 0.83 (3H, d, J = 6.5 Hz, Me-29), 0.89 (3H, d, J = 6.5 Hz, Me-30), 0.90 (3H, s, Me-24), 1.02 (3H, s, 23-Me), 1.256 (3H, s, Me-25), 1.266 (3H, s, Me-26), 3.30 (1H, dd, J 10.8 and 6.2, H-3 α); EIMS m/z (rel. int.): 458 [M]⁺ (C₃₀H₄₂D₄O₃, 100), 443 [$M - Me$]⁺ (33), 440 [$M - H_2O$]⁺ (5), 430 [$M - CO$]⁺ (5), 425 [$M - Me$]⁺ (3), 415 [$M - C_3H_7$]⁺ (3), 388 [ion a] (10), 373 [ion b] (3), 303 [ion c] (3), 304 (3), 292 [ion d] (14), 291 [ion e] (8), 279 [ion f] (18), 252 [ion g] (8), 205 [ion j] (4).

Synthesis of 1b, 1d and 1a. Acetylation of fern-8-en-3 β -ol (40 mg) with Ac₂O and pyridine (1:1, 2 ml) at room temp. gave the acetate 4b (36 mg), mp 229–231° (lit. [6], mp 229–231°, which was dissolved in HOAc (90 ml) at 80° and oxidized with a soln of CrO₃ (13 mg) in HOAc (3 ml) containing two drops of H₂O with stirring at 70–80° for 7 hr. After cooling, a few drops of 5% NaHSO₃ soln was added to the mixture to destroy excess CrO₃. Evapn of the HOAc *in vacuo* gave a residual solid, which was dissolved in Et₂O, washed with 5% NaHCO₃ and H₂O, and the Et₂O layer dried over Na₂SO₄. Removal of the solvent gave a yellow residue (38 mg). Separation by prep. TLC afforded two products, 3 β -acetoxy-fern-8-en-7,11-dione, mp 230–232° (MeOH-CHCl₃) (29 mg), [M]⁺ at m/z 496, identical in all respects (mmp, co-TLC, IR, ¹H NMR, EIMS) with supinenolone C acetate (1b) from the non-polar zone, and 3 β -acetoxyfern-8-en-7,11,12-trione (1d), mp 297–300° (MeOH-CHCl₃) (2 mg), ν_{max} cm⁻¹: 1740 (OAc), 1710 (C=O), 1678 (>C=C-C=O), 1390, 1367, 1248, 1197, 1017; EIMS m/z (rel. int.): 510 [M]⁺ (100), 495 [$M - Me$]⁺ (10), 482 [$M - CO$]⁺ (22), 477 [$M - Me - H_2O$]⁺ (15), 450 [$M - HOAc$]⁺ (10), 441 [$M - CO - C_3H_5$]⁺ (65), 439 [$M - CO - C_3H_7$]⁺ (64), 425 [$M - CH_2CO - C_3H_7$]⁺ (64), 218 (64), 151 (97), from the polar zone. Treatment of the synthetic 1b (20 mg) in boiling KOH-EtOH (0.05 M, 30 ml) afforded the corresponding dionol, mp 209–211°, which was identified by direct comparison (mmp, co-TLC, IR, ¹H NMR, EIMS) with supinenolone C (1a).

Acetylation of 2a. Compound 2a (40 mg) was acetylated as usual (Ac₂O-pyridine, 1:1, 3 ml) at room temp., overnight, to give the diacetate 2b (40 mg) as colourless needles, mp 206–209°, ν_{max} cm⁻¹: 1742, 1240 (OAc), 1664 (>C=C-CO-); ¹H and ¹³C NMR: see Tables 1 and 2; EIMS m/z (rel. int.): 540 [M]⁺ (13), 498 [$M - CH_2CO$]⁺ (31), 480 [$M - HOAc$]⁺ (76), 465 [$M - Me - HOAc$]⁺ (9), 455 [$M - CH_2CO - C_3H_7$]⁺ (36), 438 [$M - HOAc - CH_2CO$]⁺ (16), 420 [$M - 2HOAc$]⁺ (100), 405 [$M - 2HOAc - Me$]⁺ (66), 389 (13), 377 (12), 351 (27), 335 [ion i] (31), 326 (23), 311 (28), 306 (23), 205 [ion j] (25).

Acetylation of 3a. Compound 3a (30 mg) was acetylated as usual (Ac₂O-pyridine 1:1, 2 ml) to give the diacetate 3b (40 mg) as colourless needles, mp 274–276°, ν_{max} cm⁻¹: 1742, 1258 (OAc), 1675 (>C=C-CO-); ¹H and ¹³C NMR

(300 MHz): see Tables 1 and 2; EIMS m/z (rel. int.): 540 [M]⁺ (12), 525 (24), 498 (32), 480 [$M - HOAc$]⁺ (57), 465 (100), 438 (20), 420 [$M - 2HOAc$]⁺ (12), 405 (20), 395 (15), 358 [ion K] (8), 353 (21), 344 [ion I] (10), 343 [$k - Me$]⁺ (14), 329 [$l - Me$]⁺ (35), 315 [$k - C_3H_7$]⁺ (24), 302 [$l - CH_2CO$]⁺ (18), 301 [$l - C_3H_7$]⁺ (13), 269 [$l - Me - HOAc$]⁺ (70), 255 (17), 241 (23), 205 [ion j] (11).

CrO₃ oxidation of 2a and 3a. (i) A soln of CrO₃ (50 mg) in pyridine (1.5 ml) containing one drop of H₂O was gradually added to a soln of compound 2a (23 mg) in pyridine (5 ml) with stirring at 5°. The mixture was then kept at room temp. for 17 hr. Work-up as usual furnished a yellow solid (30 mg), which was purified by prep. TLC (C₆H₆-CHCl₃-EtOAc, 2:2:1) to give the trione 2c (19 mg), as pale yellow needles, mp 209–212° (MeOH-CHCl₃), m/z 452.3289 (C₃₀H₄₄O₃ requires 452.3290); λ_{max} 271 nm (ϵ 8600); ν_{max} cm⁻¹: 1770, 1660 (>C=C-C=O); ¹H NMR (90 MHz): δ 0.74 (3H, s), 0.82 (3H, d, J = 6.5 Hz), 0.85 (3H, s), 0.89 (3H, d, J = 6.5 Hz), 0.99 (3H, s), 1.09 (3H, s), 1.27 (3H, s), 1.46 (3H, s), 2.24 (2H, m), 2.44–2.83 (4H, m); EIMS m/z (rel. int.): 452 [M]⁺ (100), 437 [$M - Me$]⁺ (68), 424 [$M - CO$]⁺ (9), 409.2754 [$M - C_3H_7$]⁺ (11), 382.2500 [ion a] (28), 367 [ion b] (21), 299 [ion c] (5), 288.1732 [ion d] (30), 287 [ion e] (12), 275.1635 [ion f] (47), 248.1395 [ion g] (15), 205 [ion j] (11), 201 (15). (ii) Compound 3a (20 mg) in C₅H₅N (5 ml) was oxidized with a soln of CrO₃ (45 mg) in pyridine (1.5 ml) containing one drop of H₂O at 5° for 17 hr and the mixture was treated as described above to give pale yellow needles, mp 208–211° (MeOH-CHCl₃) (16 mg). It was identified by direct comparison (mmp, co-TLC, UV, IR, ¹H NMR, EIMS) with the sample of 2c derived from 1a.

Partial acetylation of 2a. Compound 2a (20 mg) was acetylated with Ac₂O-pyridine (1:1, 4 ml) at 0° for 1 hr. After work-up as usual, the resulting crude product (21 mg) was separated by prep. TLC (C₆H₆-CHCl₃-EtOAc, 2:2:1) to give two monoacetates, 2d (6 mg) and 2e (5 mg), together with 2b (7 mg), mp 207–209°. (i) Compound 2d: mp 315–316° (MeOH-CHCl₃), ν_{max} cm⁻¹: 1745

and 1242 (OAc), 1640 (>C=C-C=O), 1030, 1012 (C=O); ¹H NMR (90 MHz): δ 0.80 (3H, s), 0.84 (3H, d, J = 6.5 Hz), 0.89 (3H, d, J = 6.5 Hz), 0.93 (6H, s), 0.98 (3H, s), 1.12 (3H, s), 1.21 (3H, s), 2.06 (3H, s, OAc), 2.43–2.63 (2H, m, H-12), 4.42 (1H, m, W/2 8 Hz, H-7 β), 4.58 (1H, dd, J = 11, 6 Hz, H-3 α); EIMS m/z (rel. int.): 498 [M]⁺ (91), 480 (80), 465 (9), 456 (5), 455 (12), 438 (42), 420 (99), 405 (78), 377 (23), 333 (30), 319 [ion h] (73), 293 [ion i] (100), 278 [$i - Me$]⁺ (35), 215 [$i - HOAc - H_2O$]⁺ (39), 205 [ion j] (42). (ii) Compound 2e: amorphous solid, ν_{max} cm⁻¹: 1738 and 1232

(OAc), 1689 (>C=C-C=O), 1018 (C=O); ¹H NMR (90 MHz): δ 0.77 (3H, s), 0.81 (3H, s), 0.83 (3H, d, J = 6.5 Hz), 0.89 (3H, d, J = 6.5 Hz), 0.95 (3H, s), 0.98 (3H, s), 1.12 (3H, s), 1.20 (3H, s), 2.08 (3H, s, OAc), 2.37–2.62 (2H, m, H-12), 3.27 (1H, dd, J = 11, 6 Hz, H-3 α), 5.53 (1H, m, W/2 8 Hz, H-7 β); EIMS m/z (rel. int.): 498 [M]⁺ (8), 456 [$M - CH_2CO$]⁺ (36), 438 [$M - HOAc$]⁺ (100), 423 [$M - HOAc - Me$]⁺ (23), 420 [$M - HOAc - H_2O$]⁺ (26), 413 [$M - C_3H_7 - CH_2CO$]⁺ (28), 405 [$420 - Me$]⁺ (35), 377 [$420 - C_3H_7$]⁺ (9), 351 (14), 339 (33), 311 (16), 293 [ion i] (21), 264 (23), 215 [$i - HOAc - H_2O$]⁺ (23), 205 [ion j] (28).

Partial oxidation of 2a with CrO₃. Compound 2a (23 mg) in pyridine (5 ml) was oxidized with a soln of CrO₃ (25 mg) in pyridine (1 ml) containing one drop of H₂O at 0–10° for 1.5 hr. Then, several drops of 5% NaHSO₃ soln was added quickly to the mixture with stirring. Removal of the C₅H₅N *in vacuo* below 40° afforded a residue, which was dissolved with Et₂O and neutralized. Evapn of the solvent and successive separation of the resulting residue (22 mg) on prep. TLC (C₆H₆-CHCl₃-EtOAc 2:2:1) gave zones 1–4 in the order of their polarity. Individual elution of zones 1 and 2 with CHCl₃ furnished the

trione, mp 209–211° (MeOH–CHCl₃) (2 mg), and the hydroxy-dione, mp 199–201° (MeOH–CHCl₃) (9 mg), which were identified by direct comparison (mmp, co-TLC, IR, ¹H NMR, EIMS) with **2c** and **1a**, respectively. Elution of zone 3 with CHCl₃ gave **2f**, mp 314–315° (MeOH–CHCl₃) (3 mg), λ_{max} 255 nm (ϵ 7500), ν_{max} cm^{−1}: 3365 (OH), 1715 (>C=O), 1640 (>C=C—C=O); EIMS *m/z* (ref. int.): 454 [M]⁺ (60), 436 [M—H₂O]⁺ (54), 421 [M—H₂O—Me]⁺ (31), 393 [M—H₂O—C₃H₇]⁺ (16), 357 (14), 351 (18), 340 (15), 326 (11), 301 (11), 289 (20), 275 [ion **h**] (41), 249 [ion **i**] (100), 234 [i—Me]⁺ (22), 205 [ion **j**] (23), 191 (20), 189 (19). Elution of zone 4 with CHCl₃ gave **2a**, mp 309–310° (6 mg).

*Synthesis of **2c** from fern-8-en-3β-ol (**4a**).* A soln of CrO₃ (30 mg) in HOAc (6 ml) containing 3 drops of H₂O was gradually added to a soln of **4a** (25 mg) in HOAc (20 ml) at 80° with stirring. The reaction was allowed to proceed for 15 hr at 70–80°. Evapn of the HOAc *in vacuo* yielded a residue, which was extracted with Et₂O and neutralized. Removal of the solvent afforded a yellow solid (26 mg). Purification with prep. TLC furnished yellow needles (20 mg), mp 208–211°, identical in all respects (mmp, co-TLC, IR, ¹H NMR, EIMS) with **2c**.

*Synthesis of **2a**.* A soln of the synthetic **2c** (40 mg), which was prepared from **4a**, in dry Et₂O (20 ml) was gradually added into a soln of LiAlH₄ (40 mg) in dry Et₂O (30 ml) with stirring. The mixture was then kept at room temp. After standing for 24 hr, a few drop of H₂O and 5% H₂SO₄ were carefully added to the reaction mixture to destroy excess LiAlH₄ and the resulting Et₂O layer was neutralized and dried. Removal of the solvent afforded a mixture of keto-alcohols (40 mg). Due to the poor separation of the mixture of TLC, it was subjected to mild acetylation (Ac₂O–pyridine, 1:1, 10 ml) at 0° for 1 hr. Work-up as usual gave an amorphous residue (41 mg) exhibiting four main spots on TLC. Separation of the residue by prep. TLC (C₆H₆–CHCl₃–EtOAc, 2:2:1) provided four acetates, **1b** (6 mg), mp 231–234° { ν_{max} cm^{−1}: 1737, 1668, 1255; ¹H NMR: δ 4.63 (1H, *dd*, *J* = 10, 7 Hz, H-3 α); EIMS *m/z* 496 [M]⁺ (100)}, **2b** (13 mg), mp 206–209° { ν_{max} cm^{−1}: 1742, 1664, 1240; ¹H NMR (90 MHz): δ 2.06 and 2.07 (each 3H, *s*, 2 \times OAc), 4.63 (1H, *dd*, *J* = 10, 7 Hz, H-3 α), 5.53 (1H, *m*, *W*/2 8 Hz, H-7 β); EIMS: *m/z* 540 [M]⁺ (12)}, **2d** (11 mg), mp. 314–315° { ν_{max} cm^{−1}: 3365, 1715, 1640, 1242; ¹H NMR (90 MHz): δ 4.41 (1H, *m*, *W*/2 8 Hz, H-7 β), 4.58 (1H, *dd*,

J = 10, 7 Hz, H-3 α); EIMS: *m/z* 498 [M]⁺ (92)}, and **2e** (9 mg) {amorphous solid, ν_{max} cm^{−1}: 3450, 1732, 1660, 1240; ¹H NMR (90 MHz): δ 3.27 (1H, *dd*, *J* = 11, 7 Hz, H-3 α), 5.53 (1H, *m*, *W*/2 8 Hz, H-7 β); EIMS: *m/z* 498 [M]⁺ (9)}, in the order of their polarity. All the above compounds were identified by direct comparison (mmp, co-TLC, IR, ¹H NMR, EIMS) with **1b**, **2b**, **2d** and **2e** derived from natural **1a** and **2a**, respectively. Separate hydrolysis of **2a** (10 mg), **2d** (9 mg), and **2e** (8 mg) in boiling KOH–EtOH (0.05 M, 20 ml) for 1 hr followed by work-up as usual furnished the same keto-diol identical in all respects (mmp, co-TLC, IR, EIMS) with authentic supinenolone **A** (**2a**).

Acknowledgements—The authors are grateful to Mr M. Shigi and Mr A. Miyamae (Research Laboratory, Fujisawa Pharmaceutical Industry Co., Ltd) and also to Mrs M. Yoneda (née Nabae) of this University for the NMR measurements.

REFERENCES

1. Nanba, T. and Mikage, M. (1983) *Poisonous Plants*, p. 74. Hoikusha, Tokyo.
2. Okuda, T. (1986) *Encyclopedia of Natural Medicine*, p. 312. Hirokawa, Tokyo.
3. Matsunaga, S. and Morita, R. (1983) *Phytochemistry* **22**, 605.
4. Matsunaga, S., Morita, R., Ishida, T., Inoue, M., Shigi, M. and Miyamae, A. (1984) *J. Chem. Soc., Chem. Commun.* 1128.
5. Tanaka (née Morita), R., Matsuda, M. and Matsunaga, S. (1987) *Phytochemistry* **26**, 3365.
6. Tanaka, R. and Matsunaga, S. (1988) *Phytochemistry* **27**, 3579.
7. Tanaka, R., Matsunaga, S., Ishida, T. and Shingu, T. (1989) *Tetrahedron Letters* **30**, 1661.
8. Tanaka, R. and Matsunaga, S. (1989) *Phytochemistry* **28**, 1699.
9. Yamada, T., Nakamura, S., Goto, T. and Hirata, Y. (1965) *Nippon Kagaku Kaishi* **86**, 1310.
10. Talapatra, S. K., Sengupta, S. and Tarapatra, B. (1968) *Tetrahedron Letters* 5963.
11. Milburn, A. H., Turner, E. V. and Woodford, F. P. (1956) *J. Chem. Soc.* 1740.
12. Brieskorn, C. H. and Dertinger, G. (1968) *Tetrahedron Letters* 6237.